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Abstract : 

In this paper is a formal similarity between the ground state of Hred and a condensed 

Bose-Einstein gas, the analogy must be used with care due to the strong overlap of the pair 

functions. As a result of this overlap the excitation spectrum in real metal exhibits an energy 

gap rather than a continuous spectrum characteristic of a Bose-gas. If the treatment is extended 

to include the interactions neglected in Hred and one assumes all interactions to be of short 

range, a continous boson spectrum, starting at zero energy appears in the energy gap 

corresponding to density fluctuations in the electron system. In real metals these low-lying 

boson modes ae pushed up to the Plasmon energy (~104 × 2∇0) due to the long range Londons 

interaction between electrons so that there are no low lying boson modes exact for dressed 

lattice vibrations (phonons) in coset of physical interval. 

Key words : London theory, superconductivity, Plasmon, coherence length, Boltzamann’s 

transport equation  

1. Introduction : 

F. London pointed out that the equation  

𝐽𝑠̅ = 
𝑛𝑠𝑒2

𝑚𝑐
 𝐴̅          (1) 

Could be deduced from first principles if one assumed that the many body wave 

functions  Ψ describing the super fluid is valid with respect to perturbations due to a transverse 
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vector potential (∇. 𝐴̅ = 0). One can see this as follows. The current density 𝐽𝑠𝑜 in this absence 

of 𝐴̅. 

𝐽𝑠̅ (𝑟)̅ =  −
𝑒ħ

2𝑚𝑖
 ∑ ∫(Ψ𝑠

∗∇jΨs − Ψs∇jΨ𝑠
∗)𝛿  𝑑3𝑟1

𝑛𝑠
𝑗=1 … 𝑑3𝑟𝑛    (2) 

Clearly vanishes. If a weak magnetic field is applied to the system and Ψs is unaffected 

to first order by this perturbation, the paramagnetic current  continues to vanish, while the 

diamagnetic current is given by  

𝐽𝑠̅ (𝑟)̅ =  − ∑
𝑒2

𝑚𝑐
 𝐴̅ (𝑟) ∫ Ψ𝑠

∗Ψsδ (rj − r) 𝑑3𝑟1
𝑛𝑠
𝑗=1 … 𝑑3𝑟𝑛𝑠  

−𝑛𝑠𝑒2

𝑚𝑐
𝐴̅ (𝑟)     (3) 

in agreement with (1) More accurately, it is assumed that in the long wavelenght limit, 

the paramagnetic and diamagnetic currents of the normal fluid exactly cancel each other (as 

they do in the Landau diamagnetism of the normal state) while the paramagnetic current of the 

superfluied vanishes, leaving the diamagnetic supercurrent. One has suggested that the origin of 

the London "rigidity" is the energy gap in the excitation spectrum of the sysem. This somewhat 

imprecise statement is not in conflict with the fact, that insulators also possess an energy gap in 

their excitation spectra. This follows since interband matrix elements of the magnetic 

perturbation are large in this case so that the paramagnetic current is nonzero and just cancels 

the diamagnetic current. 

The miscroscopic theory reduces exactly to the form (3) in the  limit of fields which very 

slowly in space.  

On the basis of London's quantum interpretation of the London equations, he concluede 

that the flux 𝜙 trapped through a hole of a multiply connected superconducting body must be an 

integral multiple of   hc/e~4 × 10−7gauss cm2. To understand this result, consider two 
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concentric superconducting cylinders, as shown in figure 2D. Suppose that  the thickness of the 

cylinders is large compared to the penetration depth  

𝜆 and that a flux 𝜙 is trapped within the hole of the inner cylinder. Furthermore. assume 

that there is no magnetic field in the region between inner and outer cylinders so that the flux 

through the hols of the outer cylinder is equal to 𝜙. The inner cylinder acts only as a shield to 

ensurethat no magnetic field touches the physically intersting outer cylinder. Let Ψ𝑜 be the 

wave function for the outer cylinder when there is no flux trapped 𝜙 = 0. To determine the 

wave function Ψ𝑜, in case 𝜙 = 0. One notes that the vector potential in the outer ring is in 𝜃 

direction and has the value.  

𝐴0(𝑟) =  
𝜙

2𝜋𝑟
=  

1

𝑟
 

𝜕

𝜕𝜃
(

𝜙𝜃

2𝜋
) =  ∇𝜃 (

𝜙𝜃

2𝜋
)      (4) 

 

Since 𝐴̅ is the outer cylinder is the gradient of the scalar (
𝜙𝜃

2𝜋
) it follow that Ψ𝑜 and Ψ𝑜 

are related by the gauge transformation  

Ψ𝜙 =  𝑒
𝑖𝑒𝜙 ∑ 𝑄𝑗/𝑗

ħ𝑐Ψ0
           (5) 

Where 𝜃𝑗is the azimuthal coordinate of the Jth electron. If Ψ𝜙 and Ψ0 are the single-

valued function of the coordinates θ𝑗 , one must have  

e𝜙/ℎ𝑐 = 𝑖𝑛 𝑒𝑔𝑒𝑟         (6) 

or 𝜙 is quantized to the London values. 

𝜙𝑛 = 𝑛 (
ℎ𝑐

𝑒
) (n = 0, ±1, ±2)       (7) 

To complete the argument, suppose that the inner cylinder is made normal to that of the 

magnetic field fills the entire hole in the outer cylinder. Owing to the meissner effect, the 

magnetic field will penetrate only a small distance             (≈5× 10−6𝑐𝑚) cm into the outer 

http://www.jetir.org/


© 2020 JETIR September 2020, Volume 7, Issue 9                                     www.jetir.org (ISSN-2349-5162) 

JETIR2009267 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 460 
 

cylinder. Therefore the above argument should continue to hold since this small perturbation 

should not affect the wavefunct on Ψ appreciably (particularly if London's "rigidity" is 

effective). On the basis of this argument, London concluded that the flux trapped through any 

hole in a massive specimen is quantized to multile of hc/e.  

In 1953 Onssger1 suggested that the actual value of the flux quantum might be one-half 

this value, presumably become of the effective charge of the entites making up the superfluid 

being 2e. The difficulty in London's argument is that there is another series of low-lying states 

which are distinct from London's stateΨ𝑛,  and cannot be generated from the ground state Ψ𝑜, 

by a gauge transformation. This second series of states leads to the quantized flux values  

𝜙𝑛 =  (𝑛 +
1

2
) 

ℎ𝑐

𝑒
     (n = 0,±1, ± 2….)     (8) 

On taking the London Series (1.31) and (1.32) together, one  obtains the results 

suggested by Onsager. 

𝜙𝑛 =n (
ℎ𝑐

𝑒
)   (n = 0,±1, ± 2….)      (9) 

In agreement with experiement. 

2. Pippard's Nonlocal generalization of the London theory  

The basic equation of the London theory are 'local' in the sense that they relate the 

current densities and the electromagnatic potentials at the same point in space. On the basis of 

numerous experimental results, Pippard2 concluded that these local relation must be replaced by 

nonlocal relation giving the currents at a  given point in space as a space average of the field 

strength taken over a region of extent 𝜉0 = 10−4 cm of about the point in question. one of the 

most compelling arguments for this generalization is that the penetration depth λ increases 

appreciably if a sufficent amount of impurity is introduced into the material. This effects sets in 

http://www.jetir.org/


© 2020 JETIR September 2020, Volume 7, Issue 9                                     www.jetir.org (ISSN-2349-5162) 

JETIR2009267 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 461 
 

when the mean free path of ℓ electron in the normal state falls below a distance 𝜉0 known as 

Pippard's coherence length 𝜉0 is the measure of the size of the pair bound state from which the 

superfluid have function is constructed. In the miscroscopic theory it is related to the enery gap 

22∇ 𝑏𝑦 𝜉0 = ℎ𝜐𝐹/𝜋Δ were 𝜐𝐹is the Fermi velocity. On the other hand in the London theory λ is 

not expected to be appreciably affected by impurities, particularly neat T = 0. where all of the 

electrosn are condensed. In choosing a form for the nonlocal relations, Pippard was guided by 

Chamber's nonocal expression3 relating the current density and electric field strength in the 

normal metal  

J(r) = 
3𝜎

4𝜋1
∫

𝑅[𝑅.𝐸 (𝑟′)]

𝑅4
 𝑒−𝑅/1𝑑3𝑟′   R ≡ 𝑟 − 𝑟′   (10) 

where 𝜎 is the long wavelength electrical conductivity. Chamber's  

expression is a solution of Boltzmann's transport equation if the seattering mechansim is 

characterized by a mean free path I. For fields varying slowly over a mean free path I, (10) 

reduces to Ohm's law J = 𝜎𝐸. With Chamber's expression in mind, Pippard assumes that 

London's equation  

𝐽𝑠̅ (𝑟) =  −
1

𝐶Λ(𝑇)
𝐴̅(𝑟) 

1

Λ(𝑇)
 ≡  

𝑛𝑠(𝑇)𝑒2

𝑚
      (11) 

Should be replaced by  

𝐽𝑠̅ (𝑟) =  −
3

4𝜋{𝑛𝐶Λ
 ∫

𝑅̅[𝑅.̅𝐴̅(𝑟′)

𝑅4
 𝑒−𝑅/{𝑑3𝑟′     (12) 

The effective coherence length 𝜉 is given by  

1

𝜉
=  

1

𝜉0
+ 

1

𝛼1
           (13) 

Where 𝛼 is an empirical constant of order unity and 𝜉0 is a length characteristic of the material. 

For a pure material. Pippard's equation reduces to London's equation if A (r) varies slowly over 

a coherence length. For an impure material, Pippard's equation leads to an extra factor 𝜉/𝜉0 <1 
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multiplying 
1

CΛ
 in London's equation in this long wavelength limit  thereby increasing the 

effective penetration depth. In most cases distances of order λ << 𝜉are of importance in 

penetration phenomena so that the full reduction𝜉/𝜉0 is not effective. In highly impure 

specimens λ is of order of grater than 𝜉 and one has λ~(𝜉0/1)1/2 

That the effective coherence length 𝜉, should be bounded by the mean free path I is 

certainly resonable from a physical point of view. It is a tribute to Pippard's insight into the 

physics of the pi-oblem that his equation is almost identical to that given by the microscopic 

theory.  

A good deal of the qualitative aspects concerning the electro-magnetic properties of 

superconductors can be understood on the basis of simple energy-gap model. Prior to the BSC 

theory, Bardeen gave a theoretical derivation of the nonlocal electrodynamics He assumed that 

the single-particle matrix elements of the magnetic perturbation were unaltered by the 

condensation and that the single-particle excitation spectrum was altered only by adding a 

constant to the excitation energy, thereby creating an energy gap. Subsequent to the wrok of 

BCS, Ferrell, Glover. and Tinkhanm4 employed the Kramers-Kroning relation to give quire a 

general discussion of how the electrodynamic behaviour of a superconductor comes about, 

because of its energy gap.5 

3. GINSBURG- LANDAU THEORY  

In 1950 Ginsburg and Landau proposed an extension of the London theory which takes 

into account the possibility of the superfluid density ns varying in space. They phrased the 

theory in terms of an effective wave function Ψ(r) which one normalize such that the local 

density of condensed electrons is given by  
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⃒Ψ(𝑟)⃒2= 
𝑛𝑠(𝑟)

𝑛
         (14) 

where n is the total number of electrons per unit volume_ Roughly speaking 

Ψ(𝑟)corresponds to the center-of mass wave function of the BCS pairs. Ginsburg and Landau 

treated Ψ(𝑟) as an order parameter which is to be determined at each point in space by 

minimizing the free-energy functional F(Ψ, 𝑇) of the system. The problem is then one of 

guessing an appropriate form of F.  

Suppose that F(Ψ, 𝑇) is the difference of free energy per unit volume between S-and N 

phase when Ψ of is uniform. Then it is natural to include in F the term 

∫ 𝑓[Ψ(𝑟), 𝑇]𝑑3𝑟         (15) 

While F(Ψ, 𝑇) is not known a priori, Ginsburg and Landau determined this function for 

Ψ (which is all that is needed when T is near Tc) by expanding f as a power series in ⃒Ψ⃒2 and 

retating the first two nonvanishing terms, thus  

F(Ψ, 𝑇) ≅ a (T) ⃒Ψ⃒2 + 
1

2
 b (T) ⃒Ψ⃒4     (16) 

For ⃒Ψ⃒2<< 1. The equilibrium value ⃒Ψ⃒2 is determined by minimizing f.  

𝜕𝑓

𝜕⃒Ψ⃒2
= a (T) + b (T) ⃒Ψ⃒2       (17) 

And therefore 

⃒Ψ⃒2 = - 
𝑎(𝑇)

𝑏(𝑇)
         (18) 

From (16) and (18) one finds the (zero-field free-energy difference per unit volume 

between S- and N- phases is given by  

𝑓𝑠 (𝑇) − 𝑓𝑛(𝑇) ≡ - 
1

2
 
𝑎2(𝑇)

𝑏 (𝑇)
 = - 

𝐻𝑐
2(𝑇)

8𝜋
      (19) 
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Where one has used the thermodynamic relation between the critical field and the N-S 

free- energy difference. If one uses the fact that in the London theory 𝜆2(𝑇)~1/𝑛𝑠(𝑇), one 

obtains a second relation between a(T) and b(T). 

𝜆2(0)

𝜆2(𝑇)
 = 

⃒Ψ𝑐(𝑇)⃒2

⃒Ψ𝑐(0)⃒2
 = ⃒Ψ𝑐(𝑇)⃒2 = 

𝑎(𝑇)

𝑏(𝑇)
      (20) 

From (19) and (20) one finds 

a(T) = - 
𝐻𝑐

2(𝑇)

4𝜋
 

𝜆2(𝑇

𝜆2(0)
 

b(T) = - 
𝐻𝑐

2(𝑇)

4𝜋
 

𝜆4(𝑇

𝜆4(0)
 

and therefore f(Ψ, 𝑇) given by (16) can be expressed in terms of experimentally 

measurable quantities. 

If Ψ(r) is not uniform in space, Ginsburg and Landau argue that extra terms should be 

included in F which involve the rate of change of Ψ in space. Presumably these terms would 

come from (a) the kinetic energy associated with extra wiggles in the many-body wave function 

describing 𝑛𝑠 and/or vs changing in space and (b) interaction energy density being influenced by 

the variations of the superfluid density in a region surrounding the point in questions. If ⃒Ψ⃒2 

varies slowly in space it should be sufficient to keep the leading from in grad ⃒grad Ψ⃒2. On 

the basis of gauge invariance, one would expect that this term, when combined with the effect 

of a vector potential A(r) would lead to free-energy contribution of the form 

∫
𝑛∗

2𝑚∗
 ⃒

ħ

𝑖
 ∇Ψ(𝑟)  + 

𝑒∗

𝑐
 𝐴 (𝑟)Ψ(𝑟)⃒2𝑑3𝑟      (22) 

Where 𝑒∗ is the effective charge of the “entitles” forming the super fluid. (As one shall 

see, 2𝑛∗ = n, 𝑒∗ = 2𝑒, and 𝑚∗ = 2𝑚, consistent with the pairing theory) 

By minimizing the total free-energy difference 

F (Ψ1𝑇) =  ∫
𝑛∗

2𝑚∗
 [

ħ

𝑖
∇Ψ(𝑟̅) + Ψ(𝑟̅) +

𝑒∗

𝐶∗
 𝐴(𝑟̅)Ψ(𝑟̅)]-2 𝑑3𝑟 
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+∫[𝑎(𝑇)‖Ψ(𝑟)‖2 + 
1

2
 b(T) |Ψ(𝑟)4] 𝑑3 𝑟 + ∫

𝐻(𝑟)2

8𝜋
 𝑑3𝑟   (23) 

With respect to Ψ (𝑟), one finds the constitutive equation of the Ginsburg-Landau theory  

ħ2

2𝑚∗
[∇ +

𝑖𝑒∗

ħ𝑐
 𝐴(𝑟)]2 Ψ(𝑟) 

+ 
𝐻𝑐

2(𝑇)

4𝜋𝑛∗
 
𝜆2(𝑇)

𝜆2(0)
 [1 −

𝜆2(𝑇)

𝜆2(𝑂)
  ⃒Ψ(𝑟)⃒2] Ψ(𝑟) = 0    (24) 

The current density is given by  

𝐽𝑠(𝑟) = - 
𝑛∗⃒Ψ(𝑟)⃒2

𝑚∗𝑐
 𝑒∗2 𝐴(𝑟) - 

𝑛∗𝑒∗ħ

2𝑚∗𝑖
 {Ψ∗(𝑟̅)∇Ψ (𝑟̅) − Ψ(𝑟̅)∇Ψ∗ (𝑟̅)} (25) 

With the normalization of Ψ. As the London theory one is to use the gauge ∇. 𝐴̅ = 0. 

Therefore, (24) and (25) together with Maxwell’s equation ∇ × ∇𝐴̅ = 4𝜋𝑗/̅𝑐 lead to two 

nonlinear differential equations which determine the functions Ψ (r) and A (r) 

One notes that if A = 0 and Ψ is uniform in space, (24) reduces to the condition.  

1- 
𝜆2(𝑇)⃒Ψ⃒2

𝜆2(𝑂)
 = 0         (26) 

Which states that Ψ is equal to its equilibrium value (20) as required if Ψ is perturbed slightly 

from its equilibrium value at some point, say r= o, then the linearized Ginsburg- Landau 

equation.  

ħ2∇2

2𝑚∗
 Ψ̃(𝑟) − 

𝐻𝑐
2(𝑇)

2𝜋𝑛∗
 
𝜆2(𝑇)

𝜆2(𝑂)
 Ψ̃ = 0        (27) 

for the deviation Ψ̃ (r) leads to  

Ψ̃ ~ 
𝑒−𝑟/𝑑

𝑟
           (28) 

Thus the perturbation dies away exponentially, with the characteristic length  

d  = [
𝜋𝑛∗ħ2

𝑚∗𝐻𝑒
2 (𝑇)

]1/2 
𝜆(0)

𝜆(𝑇)
~

𝜉0

[1−𝑇/𝑇𝑐]1/2
       (29) 

 Where the last estimate uses the microscopic theory to relate  Ho and 𝜉0 One see that 

even though the relation between 𝐽𝑠̅ and 𝐴̅ is approximated by a local expression, the Ginsburg 

http://www.jetir.org/


© 2020 JETIR September 2020, Volume 7, Issue 9                                     www.jetir.org (ISSN-2349-5162) 

JETIR2009267 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 466 
 

Landau theory definitely includes nonlocal effects and the co-horence length appears in a 

natural way. 

Gor’kov6 has given a derivation of the Ginsburg-Landau theory starting from the microscopic 

theory. He finds the GL wave function Ψ is proportional to the local value of the energy. Gap 

parameter  

 The GL theory is particularly useful in calculation whom one cannot treat the magnetic 

field by perturbation theory. Typical examples of such situations include thin films in strong 

magnetic fields, N- S phase boundaries, the intermediate state, etc. One can give a simple 

derivation of flux quantization on the basis of the current equation (25) and one finds the flux 

quantum to be hc/e*. The experimentally observed value hc/2e leads to the value e* = 2e, as 

mentioned above. The GL theory has played an important role in explaining the magnetic 

behavior of So called “hard” superconductors, which are particularly interesting materials, due 

to their high critical fields (~105 𝑔𝑎𝑢𝑠𝑠).  Fundamental theoretical work in this area is due to 

Abrikosov, who established the vortex picture to account for this magnetic behavior. Each 

vortex carries one quantum of flux.  

 Unfortunately, the original Ginsburg-Landau theory is restricted to the temperature range 

(Tc-T)/Tc << 1. Although it has recently been extended to all temperatures suitable conditions 

by Wertheimer and by Tewordt.  

4. Conclusion : 

 For a large system, whether the physical system has an even or an odd total number of 

electrons makes no difference in its macroscopic properties; thus the wave functions above 
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apply for any N. The situation is differently different for pairing correlations in atomic nuclei, 

where these differences lead to the well-known even-odd effects. 
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